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Abstract
If q is smooth on the edges of a finite metric graph with all edges of length
one, the eigenvalues of the Schrödinger operator −D2 + q with standard vertex
conditions have generalized asymptotic expansions to all orders.

PACS numbers: 02.30.Hq, 03.65.Nk, 63.22.Gh
Mathematics Subject Classification: 34B45

1. Introduction

In this work, we consider the problem of providing an asymptotic description for the
eigenvalues of a Schrödinger operator on a finite metric graph G with NE edges. All edges
are assumed to have length 1, and the operators have the form −D2 + q where q is a smooth
function on the edges. Eigenfunctions are required to satisfy the standard ‘continuity plus
Kirchhoff’ conditions at interior vertices, and either a Dirichlet condition y(v) = 0 or a
Neumann condition y ′(v) = 0 at boundary vertices.

Typically the first such eigenvalue estimate is the ‘Weyl estimate’. For λ > 0 let ρ(λ)

be the number of eigenvalues less than or equal to λ. As has been noted by previous authors
[1–3], one has ρ(λ) � NEλ

1/2/π . Hoping to push further, one can consider a Sturm–Liouville
problem such as

−y ′′ + py = λy, y(0) = y(1) = 0, (1.1)

with p ∈ C∞ as a possible model. For this problem [4] there is a complete asymptotic
expansion

λn = n2π2 +
∫ 1

0
p(x) dx + · · · , (1.2)

and the eigenvalues λn are the roots of the entire function s(1, λ), where s(x, λ) is the solution
of −y ′′ + py = λy satisfying y(0, λ) = 0 and y ′(0, λ) = 1.
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One encounters several problems in trying to extend such explicit eigenvalue expansions to
quantum graphs. The first obstacle already appears in the q = 0 case, where previous authors
[1–3] have shown that λ �= n2π2 is an eigenvalue if and only if cos(

√
λ) is an eigenvalue of a

normalized adjacency matrix. This result guarantees a useful regularity, but it also means that
describing eigenvalues is likely to be at least as complicated as root finding for high-degree
polynomials.

The operator −D2 + q on G may be identified with a boundary value problem for a
system of equations on [0, 1]. As in the Sturm–Liouville problem, there is an entire function
det(χS(λ)) whose zeros are the eigenvalues of −D2 + q. Here χS(λ) is a 2NE × 2NE matrix
function. The main work of the paper is to develop an asymptotic expansion for χS(λ), with
considerable effort expended in the analysis of the first term. In the course of that analysis,
we encounter what appears to be a new graph matrix.

The asymptotic expansion of χS(λ) and a related matrix function χF (λ) has a classical
form and depends on N(J ) constant coefficients for an order J approximation. The coefficients
are obtained by evaluation at 0 and 1 of expressions which are polynomial in the symbols
Q, d

dx
and

∫
. The eigenvalues of −D2 + q can then be approximated by the singular values of

the matrix functions which are partial sums of the asymptotic expansions.
With these qualifications about what a generalized asymptotic expansion means, our main

result is the following.
Main result. The eigenvalues of the operator −D2 + q have generalized asymptotic

expansions to all orders J = 1, 2, 3, . . ..
As a consequence of our analysis, we are also able to give a reasonably explicit

generalization of the two term expansion of (1.2).
We briefly describe the organization of the paper. Section 2 provides a review of previous

work and establishes some standard notation. Section 3 introduces the matrix characteristic
function χS(λ) and the modified characteristic function χF (λ). The real work begins in
section 4, where a matrix pencil M1 + ζM2 is studied. M1 and M2 are 2NE × 2NE constant
matrices which give a description of how to construct the graph from oriented edges. This
pencil is central to the error estimates for our expansions. Section 5 develops asymptotic
expansions for the characteristic functions, then describes the approximation of eigenvalues
by the singular values computed using the expansions. As an application, we show that the
addition of the potential q to −D2 causes the eigenvalues λn to shift, as n → ∞, by a linear
combination of the integrals of q over the edges of G.

The matrix pencil M1 + ζM2, and particularly the matrix M−1
1 M2 appear closely related

to the bond scattering matrix discussed in [5, 6]. It is likely that a perturbation theory similar
to ours could also be developed using these methods. The two approaches appear to have
different strengths. The unitary structure of the unperturbed bond scattering matrix is easily
verified, while our analysis of the pencil is more indirect. On the other hand our approach,
emphasizing an entire characteristic function, seems suitable for inverse spectral problems or
algorithms that exploit the sampling theory of entire functions. An explicit translation of these
two methods for quantum graphs still seems to be absent, although [7] appears headed in that
direction.

2. Some background material

To establish notation and a context for our results, we review some known material about
quantum graphs. The propositions in this section are closely related to results in [1, 2].
Additional information may be found in [8, 3] or in the collections [9–11]. For this work a
graph G will be finite, with NV vertices and NE edges. Every vertex will belong to at least one
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edge. To avoid minor technical issues, the graph is assumed simple, and all edges have length 1.
Multigraphs, graphs with loops, or graphs whose edge lengths are integer multiples of a
common value can be easily incorporated by inserting additional vertices.

The edges en are initially assumed to be directed and numbered, although this is mainly
for notational convenience. Consistent with the edge directions, each edge is identified with
the interval [0, 1]. The standard metric and Lebesgue measure on intervals are extended to G.
L2(G) will denote the Hilbert space ⊕nL

2(en) with the inner product

〈f, g〉 =
∫
G
f g =

Nε∑
n=1

∫ 1

0
fn(x)gn(x) dx, f = (f1, f2, . . . , f Nε).

Assume that q is a real-valued function on G, whose restriction to en is qn. The functions
qn will have derivatives q(k)

n of all orders on (0, 1), with each q(k)
n extending continuously

to [0, 1]. The function q is not assumed to be continuous on G. A self-adjoint operator
L = −D2 + q, acting componentwise on f ∈ L2(G), will have a domain characterized by
certain vertex conditions.

At boundary vertices v, which have a single incident edge, either a Dirichlet condition

y(v) = 0, (2.1)

or a Neumann condition

y ′(v) = 0, (2.2)

will apply. If v is an interior vertex, with degree deg(v) > 1, pick a local indexing
e1, . . . , edeg(v) for the edges incident on v. Assume the standard local coordinates, which
identify en with [0, 1] so that 0 corresponds to v for each edge. At the interior vertex v the
standard continuity and derivative (Kirchhoff) conditions apply,

yn(0) = yn+1(0), n = 1, . . . , deg(v) − 1,

deg(v)∑
n=1

y ′
n(0) = 0. (2.3)

The self-adjoint operator L will have compact resolvent. Since this operator differs by a
finite set of vertex conditions from a collection of NE decoupled Sturm–Liouville problems,
one easily obtains the ‘Weyl’ estimate.

Proposition 2.1. Let ρ(λ) be the number of eigenvalues of L, counted with multiplicity, that
are less than or equal to λ. Then

ρ(λ) � NE

π

√
λ.

G also has combinatorial operators acting on the vertex space. Assume that v is a vertex
with adjacent vertices u1, . . . , udeg(v). Let f : V → C be a function on the vertex set. Define
the normalized adjacency operator by

Âf (v) = T −1Af (v) = 1

deg(v)

deg(v)∑
i=1

f (ui),

where A is the standard adjacency operator, and T is the degree operator Tf (v) = deg(v)f (v).
A simple transformation leads to

Lc = T 1/2[I − Â]T −1/2,

a much studied operator variously called the Laplacian [12, p 3], the normalized Laplacian, or
the analytic Laplacian.
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When q = 0 the eigenvalues of L0 = −D2, which are nonnegative, are closely related
to the eigenvalues of Â. Variations on this theme have been independently developed in
the mathematics [1, 2] and physics [13] literature. To summarize these results, suppose
ω � 0, λ = ω2, and E(λ) is the eigenspace for L0 with eigenvalue λ.

The strictly positive eigenvalues occur ‘periodically’ in ω.

Proposition 2.2. If ω > 0,

dim E(ω2) = dim E([ω + 2nπ ]2), n = 1, 2, 3, . . . .

This shows that for ω � 0 the value of ρ([ω + 2π ]2) − ρ(ω2) is a constant, whose value
may be obtained from proposition 2.1.

Proposition 2.3. For ω � 0

ρ([ω + 2π ]2) − ρ(ω2) = 2NE .

Now assume that Neumann conditions apply at boundary vertices.

Proposition 2.4. If λ /∈ {n2π2 | n = 0, 1, 2, . . .}, then λ is an eigenvalue of L0 = −D2, with
Neumann conditions at boundary vertices, if and only if cos(ω) = cos(

√
λ) is an eigenvalue

of Â, with the same geometric multiplicity.

3. Characteristic functions

3.1. Defining the characteristic function

This section will introduce a 2NE × 2NE entire matrix function χS(λ) whose singular values
are the eigenvalues of the quantum graph. To identify graph eigenfunctions with solutions
of a system of ordinary differential equations, select a numbering e1, . . . , eN of the N = NE
edges of G, and a set of coordinates identifying each edge with [0, 1]. A function y on G may
then be written as a vector function

Y (x) = (y1(x), . . . , yN(x))T , 0 � x � 1.

In this representation, an eigenfunction of the graph operator −D2 + q will be a solution of
the diagonal system

−Y ′′ + Q(x)Y = λY, Q(x) = diag[q1(x), . . . , qN(x)]. (3.1)

To satisfy the vertex conditions (2.1), (2.2) or (2.3), such an eigenfunction of the self-
adjoint operator L will satisfy a typically nondiagonal set of 2N independent linear boundary
conditions, which have the form∑

b1
mnyn(0) +

∑
b2

mny
′
n(0) +

∑
b3

mnyn(1) +
∑

b4
mny

′
n(1) = 0,

(3.2)
m = 1, . . . 2N, n = 1, . . . , N,

with coefficients bl
mn ∈ {0,±1}. If Bl = (

bl
mn

)
, then the 2N × 4N boundary matrix is

B = (B1, B2, B3, B4). (3.3)

A basis of solutions for (3.1) may be identified with a pair of N × N matrix functions
(Y1(x, λ), Y2(x, λ)) whose columns are linearly independent solutions. Let IN denote the

4
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N × N identity matrix. The standard basis for the diagonal system is (C(x, λ), S(x, λ)),
where

C(x, λ) = diag[c(x, λ, q1), . . . , c(x, λ, qN)],

S(x, λ) = diag[s(x, λ, q1), . . . , s(x, λ, qN)],

which satisfies the initial condition(
C(0, λ) S(0, λ)

C ′(0, λ) S ′(0, λ)

)
= I2N .

Lemma 3.1. Suppose that (Y1(x, λ), Y2(x, λ)) is a basis for (3.1). The number λ ∈ C is an
eigenvalue of −D2 + q on G with geometric multiplicity mg if and only if the 2N × 2N matrix

χ(λ) = (B1 B2 B3 B4)

⎛⎜⎜⎜⎜⎝
Y1(0, λ) Y2(0, λ)

Y ′
1(0, λ) Y ′

2(0, λ)

Y1(1, λ) Y2(1, λ)

Y ′
1(1, λ) Y ′

2(1, λ)

⎞⎟⎟⎟⎟⎠ (3.4)

has a null space of dimension mg .

Proof. First, suppose λ ∈ C is an eigenvalue of −D2 + q on G with geometric multiplicity
mg . Each eigenfunction Y (x, λ) is a linear combination of the basis elements of the solutions
of (3.1), and there are mg independent 2N × 1 matrices αi such that

Zi = (Y1(x, λ) Y2(x, λ))αi

gives a basis for the eigenspace. The boundary values of Zi are⎛⎜⎜⎜⎜⎝
Zi(0, λ)

Z′
i (0, λ)

Zi(1, λ)

Z′
i (1, λ)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Y1(0, λ) Y2(0, λ)

Y ′
1(0, λ) Y ′

2(0, λ)

Y1(1, λ) Y2(1, λ)

Y ′
1(1, λ) Y ′

2(1, λ)

⎞⎟⎟⎟⎟⎠ αi.

Since Zi satisfies the boundary conditions, we have

(B1 B2 B3 B4)

⎛⎜⎜⎜⎜⎝
Y1(0, λ) Y2(0, λ)

Y ′
1(0, λ) Y ′

2(0, λ)

Y1(1, λ) Y2(1, λ)

Y ′
1(1, λ) Y ′

2(1, λ)

⎞⎟⎟⎟⎟⎠ αi = 0,

and each vector αi is a null vector for the 2N × 2N matrix χ(λ).
Conversely, if χ(λ) has a null space of dimension mg , then we have mg-independent

null vectors αi , and the independent vectors Zi defined as above will satisfy the boundary
conditions. �

A specific choice of basis may simplify the analysis of χ(λ). Starting with the standard
basis for (3.1), define the matrix characteristic function

χS(λ) = (B1 B2 B3 B4 )

⎛⎜⎜⎜⎜⎝
C(0, λ) S(0, λ)

C ′(0, λ) S ′(0, λ)

C(1, λ) S(1, λ)

C ′(1, λ) S ′(1, λ)

⎞⎟⎟⎟⎟⎠
= (B1 B2 ) + (B3 B4 )

(
C(1, λ) S(1, λ)

C ′(1, λ) S ′(1, λ)

)
. (3.5)

5
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The previous lemma and the well-known analyticity of the functions c(x, λ, qn) and
s(x, λ, qn) from the standard basis give the next lemma.

Lemma 3.2. The number λ ∈ C is an eigenvalue of −D2 + q on G if and only if the 2N × 2N

entire matrix function χS(λ) has determinant 0.

3.2. A modified characteristic function

Extend the definition ω = √
λ to complex λ /∈ (−∞, 0]. Another convenient basis is

(E+(x, λ), E−(x, λ)) = (C(x, λ), S(x, λ))

(
IN IN

iωIN −iωIN

)
, (3.6)

which has initial values(
E+(0, λ) E−(0, λ)

E′
+(0, λ) E′

−(0, λ)

)
=

(
IN IN

iωIN −iωIN

)
.

If Q is the zero function, then

(E+(x, λ), E−(x, λ)) = (exp(iωx)IN, exp(−iωx)IN).

Using (3.6), the basis (E+, E−) is associated with a modified characteristic function
χE(λ), defined by

χS(λ) = 1

2
χE(λ)

(
IN −iω−1IN

IN iω−1IN

)
, (3.7)

where

χE(λ) = (B1 B2 B3 B4 )

⎛⎜⎜⎝
E+(0, λ) E−(0, λ)

E′
+(0, λ) E′

−(0, λ)

E+(1, λ) E−(1, λ)

E′
+(1, λ) E′

−(1, λ)

⎞⎟⎟⎠
= (B1 B2 )

(
IN IN

iωIN −iωIN

)
+ (B3 B4 )

(
E+(1, λ) E−(1, λ)

E′
+(1, λ) E′

−(1, λ)

)
. (3.8)

The form of the vertex conditions now plays an important role. Introducing additional
notation, let

ζ = exp(iω),

and let 	 be the 2N ×2N diagonal matrix with kth diagonal entry iω if the kth vertex condition
has derivative evaluations, and 1 otherwise. The factorization (3.7) will now be extended.

Lemma 3.3. The characteristic function χS(λ) may be factored as

χS(λ) = 1

2
	χF (λ)

(
IN 0N

0N ζ−1IN

) (
IN −iω−1IN

IN iω−1IN

)
, λ /∈ (−∞, 0], (3.9)

with

χF (λ) = (B1 B2)

(
IN ζ IN

IN −ζ IN

)
+ (B3 B4)

(
E+(1, λ) E−(1, λ)ζ

(iω)−1E′
+(1, λ) (iω)−1E′

−(1, λ)ζ

)
. (3.10)

Proof. The boundary conditions (3.2) coming from the graph involve either function
evaluations or derivative evaluations, but not both. This leads to the identity

	−1(B1 B2) = (B1 B2)

(
IN 0N

0N −iω−1IN

)
6
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since both products leave fixed the entries of B1, which express function evaluations, and
multiply all nonzero entries of B2 by −iω−1. The same reasoning also gives

	−1(B3 B4) = (B3 B4)

(
IN 0N

0N −iω−1IN

)
.

The desired factorization follows by applying these identities to

χE(λ) = 		−1(B1 B2 )

(
IN IN

iωIN −iωIN

)(
IN 0N

0N ζIN

) (
IN 0N

0N ζ−1IN

)
+ 		−1(B3 B4 )

(
E+(1, λ) E−(1, λ)

E′
+(1, λ) E′

−(1, λ)

) (
IN 0N

0N ζIN

) (
IN 0N

0N ζ−1IN

)
. �

4. Characteristic function χ0(λ) for −D2

When Q = 0 the modified characteristic function χF (λ) has the elementary form of a linear
pencil M1 + ζM2, in ζ = eiω, where the constant 2NE × 2NE matrices are

M1 = (B1 + B2 B3 − B4), M2 = (B3 + B4 B1 − B2). (4.1)

The characteristic function χS(λ) in the Q = 0 case will be denoted by χ0(λ). When
notationally convenient we take N = NE . The main features of M1 + ζM2 and

χ0(λ) = (B1 B2) + (B3 B4)

⎛⎜⎝ cos(
√

λ)IN

sin(
√

λ)√
λ

IN

−√
λ sin(

√
λ)IN cos(

√
λ)IN

⎞⎟⎠ (4.2)

are described in the next theorem.

Theorem 4.1. The eigenvalues of −D2 for a graph G with NE edges and standard vertex
conditions are the roots of det χ0(λ), where χ0(λ) is an entire 2NE ×2NE matrix function. The
geometric multiplicity of the eigenvalue at λ is the dimension of the null space of χ0(λ). With
λ ∈ C \(−∞, 0], ω = √

λ and ζ = exp(iω), the matrix function χ0(λ) has a factorization

χ0(λ) = 1

2
	[M1 + ζM2]

(
IN 0N

0N ζ−1IN

)(
IN −iω−1IN

IN iω−1IN

)
, (4.3)

where 	 is a 2NE × 2NE diagonal matrix, with diagonal entries either iω or 1, and M1 and
M2 are 2NE × 2NE constant matrices. Except for M1 + ζM2, the matrices appearing in this
factorization are invertible, so for �(ω) > 0 the number ω2 is an eigenvalue of −D2 if and
only if det(M1 + ζM2) = 0.

The matrices M1 and M2 are invertible, so det(M1 + ζM2) = 0 if and only if −ζ is an
eigenvalue of M−1

2 M1. Counted with geometric multiplicity, the 2NE × 2NE matrix M−1
2 M1

has 2NE eigenvalues −ζ1, . . . ,−ζ2N , all satisfying |ζk| = 1. Suppose det χ0(λ1) = 0 and
λ1 �= 0. Then χ−1

0 (λ) has a simple pole at λ = λ1.

The claims in the first paragraph of theorem 4.1 have already been established in
lemma 3.1, lemma 3.2 and in the development of (3.8) and (3.10). The rest of the proof
will be presented in the next pair of lemmas.

Consider the matrix M1 in a special case. Assume that the vertex v has degree m � 2,
that the first m vertex conditions come from v, and that all edges incident on v are oriented so

7
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that v is identified with x = 0. Then the first m × m block of M1 can be assumed to have the
form

D =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 . . . 0
0 1 −1 . . . 0

0 0
... . . . 0

0 0 . . . 1 −1
1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

The matrix D is invertible and provides a model for the next result.

Lemma 4.2. The matrices M1 and M2 are invertible.

Proof. The proofs are similar for M1 and M2, so only the first case is treated. The argument
is by contradiction. If M1 is not invertible there is a nonzero vector X = (x1, . . . , x2N)T with
M1X = 0. Suppose in particular that xk �= 0. The cases 1 � k � N and N + 1 � k � 2N are
similar. Suppose that 1 � k � N , and that v is the vertex corresponding to 0 for the kth edge.

If v has only one incident edge, then either vertex condition (2.1) or (2.2) applies. If this
vertex condition is represented by row j of M1, then the j th component equation for M1X = 0
is xk = 0, contradicting the assumption that xk �= 0.

Suppose deg(v) = m � 2, so vertex conditions (2.3) hold for v. After a reordering of
the vertex conditions for all vertices, the vertex conditions for v may be assumed to be the
first m conditions, determining the first m rows of M1. Let j (1) < · · · < j(m) be the column
indices (which include k) with nonvanishing entries in the first m rows of M1. After applying
additional elementary row operations on the first m rows of M1, which gives equivalent vertex
conditions and does not affect the invertibility of M1, the first m equations of M1X = 0 may
be assumed to have the form

xj(i) − xj(i+1) = 0, i = 1, . . . , m − 1,

m∑
i=1

xj(i) = 0.

Since the values xj(i) are equal, the last equation gives mxk = 0, a contradiction. �

Finding the values of ζ for which M1 + ζM2 has determinant 0 is the same as finding the
values of ζ for which

det
(
M2

[
M−1

2 M1 − ζ IN

]) = 0,

which is the same as saying ζ should be one of the eigenvalues of the constant matrix M−1
2 M1.

The next lemma completes the proof of theorem 4.1.

Lemma 4.3. Counted with geometric multiplicity, the 2NE × 2NE matrix M−1
2 M1 has 2NE

eigenvalues ζ1, . . . , ζ2N , all satisfying |ζk| = 1.
Suppose λ1 �= 0 is an eigenvalue of −D2. Then χ−1

0 (λ) has a simple pole at λ = λ1, and
(M1 + exp(iω)M2)

−1 has a simple pole at
√

λ1.

Proof. The eigenvalues of −D2 are real and nonnegative. Pick a real interval of the form
I = (ω0, ω0 + 2π) with ω0 > 0 and χ0

(
ω2

0

)
nonsingular. For k = 1, 2, . . . , let λk = ω2

k be
the eigenvalues of −D2 for ω ∈ I.

First, proposition 2.3 shows that the sum of the geometric multiplicities of the eigenvalues
ω2

k is 2NE . By lemma 3.1 this is the same as the sum of the geometric multiplicities of 0 as
an eigenvalue of χ0

(
ω2

k

)
, which is the same as the sum of the geometric multiplicities of the

2NE eigenvalues of M−1
2 M1 at ζk = exp(iωk). Since the sum of the algebraic multiplicities of

the eigenvalues of M−1
2 M1 is also 2NE , all of the eigenvalues are accounted for.

8
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Suppose λ1 �= 0 and det χ0(λ1) = 0. Rewrite the factorization of χ0(λ) as

χ0(λ) = 1

2
	M2

[
M−1

2 M1 + ζ I
] (

IN 0N

0N ζ−1IN

) (
IN −iω−1IN

IN iω−1IN

)
.

The factors other than M−1
2 M1 + ζ I have inverses which are analytic in a neighborhood of λ1.

Since the sum of the geometric multiplicities of the eigenvalues of M−1
2 M1 is 2NE , the matrix

M−1
2 M1 is diagonalizable, and

(
M−1

2 M1 + ζ I
)−1

is similar to

diag[(ζ1 + ζ )−1, . . . , (ζ2N + ζ )−1].

The functions

fk(λ) = ζk + ζ = ζk + exp(i
√

λ)

have derivative

f ′
k(λ) = i

2
√

λ
exp(i

√
λ).

Since the derivatives do not vanish, if fk has a zero at λ1, it is a simple zero, so χ−1
0 (λ) has a

simple pole at λ1. Essentially the same argument works for (M1 + exp(iω)M2)
−1. �

5. Asymptotic expansions

This section begins with a review of asymptotic developments for solutions of the scalar
equation

−y ′′ + q(x)y = λy, (5.1)

and the analogous diagonal matrix equation (3.1).

5.1. Characteristic function asymptotics

Suppose the functions c(x, λ) and s(x, λ) satisfy (5.1) subject to the initial conditions

c(0, λ) = 1, s(0, λ) = 0,

c′(0, λ) = 0, s ′(0, λ) = 1.

When q(x) is sufficiently differentiable, elaborate expansions for these functions may be
computed. Expansions to all orders for smooth functions q are described in [4, 14]. To
indicate the nature of the expansion, if q ∈ H 2

C
and

[q] =
∫ 1

0
q(x) dx,

then [15, p 16]

c(1, λ) = cos(
√

λ) + [q]
sin(

√
λ)

2
√

λ

+

(
q(1) − q(0) − 1

2
[q]2

)
cos(

√
λ)

4λ
+ O(|λ|−3/2 exp(|�

√
λ|)),

c′(1, λ) = −
√

λ sin(
√

λ) + [q]
cos(

√
λ)

2
+ q(1)

sin(
√

λ)

2
√

λ

−
(

q(1) − q(0) − 1

2
[q]2

)
sin(

√
λ)

4
√

λ
+ O(|λ|−1 exp(|�

√
λ|)),

9
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s(1, λ) = sin(
√

λ)√
λ

− [q]
cos(

√
λ)

2λ

+

(
q(1) + q(0) − 1

2
[q]2

)
λ−3/2 sin(

√
λ)

4
+ O(|λ|−2 exp(|�

√
λ|)),

s ′(1, λ) = cos(
√

λ) + [q]λ−1/2 sin(
√

λ)

2
− q(1)

cos(
√

λ)

2λ

+

(
q(1) + q(0) − 1

2
[q]2

)
λ−1 cos(

√
λ)

4
+ O(|λ|−3/2 exp(|�

√
λ|)).

These expansions extend to the basis of (3.6), since

E±(x, λ) = C(x, λ) ± i
√

λS(x, λ).

When x = 1 the expansions take the form

(E+(1, λ) E−(1, λ)) = (EJ,+(ω) EJ,−(ω)) + R0
J ,

(E′
+(1, λ) E′

−(1, λ)) = iω
[
(E′

J,+(ω) E′
J,−(ω)) + R1

J

]
,

with ∥∥R0
J (ω)

∥∥ = O(ω−J ),
∥∥R1

J (ω)
∥∥ = O(ω−J ).

In these expansions,

(EJ,+(ω) EJ,−(ω)) =
J−1∑
m=0

(iω)−m(exp(iω)IN exp(−iω)IN)Am

(5.2)

(E′
J,+(ω) E′

J,−(ω)) =
J−1∑
m=0

(iω)−m(exp(iω)IN exp(−iω)IN)Bm,

with Am and Bm being 2N × 2N matrices with complex entries.
As in (3.1), let Q = diag[q1, . . . , qN ]. The coefficients for m = 0, 1, 2 are

A0 =
(

IN 0N

0N IN

)
, A1 = 1

2

(
[Q] 0N

0N −[Q]

)
,

A2 = 1

8

(
[Q]2 − 2Q(1) 2Q(0)

2Q(0) [Q]2 − 2Q(1)

)
. (5.3)

B0 =
(

IN 0N

0N −IN

)
, B1 = 1

2

(
[Q] 0N

0N [Q]

)
,

B2 = 1

8

(
[Q]2 + 2Q(1) −2Q(0)

2Q(0) −[Q]2 − 2Q(1)

)
.

The asymptotic developments for E±(x, λ) together with (3.10) lead to an expansion for
χF (λ). The 2NE × 2NE matrix function χF (λ) = χF (ω2) may be written as a sum,

χF (ω2) = F1(ω) + FJ (ω) + R(ω), (5.4)

with the first term being the entire 2π -periodic function

F1(ω) = M1 + exp(iω)M2,

whose properties are described in theorem 4.1, and for a fixed J � 2

F1(ω) + FJ (ω) = (B1 B2 )

(
IN ζ IN

IN −ζ IN

)
+ (B3 B4 )

(
EJ,+(ω) EJ,−(ω)

E′
J,+(ω) E′

J,−(ω)

)(
IN 0N

0N ζIN

)
.

(5.5)

10



J. Phys. A: Math. Theor. 41 (2008) 145202 R Carlson and V Pivovarchik

From the definition of FJ and the more or less standard ([4, 14]) estimates for the
remainder R(ω), one obtains the following lemma.

Lemma 5.1. The functions FJ (ω) and R(ω) are analytic in the open half plane �(ω) > 0.
For 0 < σ0 < ∞ and 0 < τ0 < ∞, let

S0 = {ω|�(ω) > σ0, |�(ω)| < τ0} (5.6)

denote a closed horizontal strip in the right half plane. For ω ∈ S0

‖R(ω)‖ � C|ω|−J ,

and

‖FJ (ω)‖ � C1|ω|−1.

5.2. Eigenvalue asymptotics

Let us summarize the main developments so far. The eigenvalues of −D2 + Q coincide with
the roots of det(χS(λ)), and the geometric multiplicity of the eigenvalues agrees with the
dimension of the null space of the matrix characteristic function χS(λ). Except for λ = 0, the
dimension of the null space of χS(λ) agrees with the dimension of the null space of χF (λ),
which has an expansion described in (5.2)–(5.5).

F1(ω) is an entire 2π -periodic matrix function. Let ω1 < · · · < ωK denote the roots of
det F1(ω) in the interval (0, 2π ], and let m(k) denote the multiplicity of 0 as an eigenvalue of
F1(ωk). The sum of the dimensions of the null spaces of F1(ω) over a period is 2NE . The
function F−1

1 (ω) has simple poles at ω = ωk . For integers n � 0 let ωk,n = ωk + 2πn. For
r0 > 0 define

Dk,n = {|ω − ωk,n| < r0}, ∂Dk,n = {|ω − ωk,n| = r0}.
Assume that r0 is chosen small enough that the closed disks Dk,n are pairwise disjoint.

Lemma 5.2. With S0 as defined in (5.6), there are positive constants C and σ1 such that
F1 + FJ is invertible in

[S0 ∩ {|�(ω)| � σ1}]
∖[⋃

k,n

Bk,n

]
, Bk,n = {|ω − ωk,n| � C|ωk,n|−1}.

Let z1, . . . , zJ be the roots of det(F1 + FJ )(zj ) in Bk,n. Then the number of roots zj , counted
with multiplicity, is m(k).

Moreover, if r0 is sufficiently small and |z| is sufficiently large, det(F1 + FJ )(z) has a
positive lower bound for z ∈ ∂Dk,n, independent of k and n.

Proof. The function F1(ω) is periodic, and for

ω ∈ S0

∖[ ⋃
k,n

Dk,n

]
it is invertible, so the decay of FJ (ω) gives

det(F1 + FJ )(ω) = det F1(ω) det
[
IN + F−1

1 (ω)FJ (ω)
]

= det F1(ω)[1 + O(|ω|−1)]. (5.7)

If �(ω) is also sufficiently large, then

|det(F1 + FJ ) − det(F1)| < |det(F1(ω))|,
11
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and by Rouche’s theorem [16, p 152] the matrix function F1 + FJ is invertible in
S0

∖[ ⋃
k,n Dk,n

]
, and inside each disk Dk,n the functions det(F1 + FJ ) and det(F1) have

the same number of zeros, which is m(k).
These results now extend to Bk,n. Since F−1

1 (ω) has a simple pole at ωk + 2nπ , and F1(ω)

is periodic with period 2π , there are positive constants C2, r1 < r0 such that∥∥F−1
1 (ω − ωk − 2nπ)

∥∥ � C2|ω − ωk − 2nπ |−1, 0 < |ω − ωk − 2nπ | � r1, (5.8)

and this estimate holds independent of k and n.
Since

(F1 + FJ )(ω) = F1(ω)
[
IN + F−1

1 (ω)FJ (ω)
]
,

F1 + FJ is invertible if∥∥F−1
1 (ω)FJ (ω)

∥∥ < 1.

By lemma 5.1 and (5.8) this estimate will hold for

0 < r2 � |ω − ωk − 2nπ | � r1

if

C1C2|ω|−1|ω − ωk − 2nπ |−1 < 1,

that is if

r2 > C1C2|ω|−1,

and the rest is clear. �

Suppose X = [x1, . . . , xm] is an unordered m-tuple of complex numbers. By Newton’s
identities [17, p 208] the power sums

m∑
i=1

x
p

i , p = 1, . . . , m,

uniquely determine X. Let γk,n be a simple closed path traversing ∂Dk,n once in the
counterclockwise direction. A variant of Rouche’s theorem [16, p 152] allows us to compare
power sums coming from F1 + FJ with sums coming from χF .

Theorem 5.3. For i = 1, . . . , m(k) let zi and wi respectively be the roots of det(F1 + FJ ) and
det χF in Dk,n, with both sets of roots listed with multiplicity. Let ωk,n be the root of det(F1)

in Dk,n. Then for p � 1

m(k)∑
i=1

(zi − ωk,n)
p −

m(k)∑
i=1

(wi − ωk,n)
p = O(|ω|−J ).

Proof. With f = det(F1 + FJ ) the power sums
m(k)∑
i=1

(zi − ωk,n)
p

are given by the integral formula [16, p 152]

1

2π i

∫
γk,n

(ω − ωk,n)
p f ′(ω)

f (ω)
dω.

As noted in lemma 5.2, f (ω) is bounded away from 0 uniformly on ∂Dk,n. By (5.7) and the
Cauchy integral formula we may also conclude that f ′(ω) is uniformly bounded on ∂Dk,n.

12
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If g = det(χF (ω)) the same boundedness assertions apply to g, and the difference of power
sums is

1

2π i

∫
γk,n

(ω − ωk,n)
p

[
f ′(ω)

f (ω)
− g′(ω)

g(ω)

]
dω

= 1

2π i

∫
γk,n

(ω − ωk,n)
p∂ω[log(f (ω)) − log(g(ω))] dω

= 1

2π i

∫
γk,n

(ω − ωk,n)
p∂ω log

(
f (ω)

g(ω)

)
dω.

Since the functions f and g are bounded away from 0 on ∂Dk,n, we also have

f

g
= det(F1 + FJ )(ω)

det(χF (ω))
= det(I + O(|ω|−J )), ω ∈ ∂Dk,n.

We then see that log
(

f (ω)

g(ω)

)
is single valued and analytic on ∂Dk,n, so we may integrate by

parts to get

1

2π i

∫
γk,n

(ω − ωk,n)
p∂ω log

(
f (ω)

g(ω)

)
dω = − 1

2π i

∫
γk,n

p(ω − ωk,n)
p−1 log

(
f (ω)

g(ω)

)
dω.

The estimate

log

(
f (ω)

g(ω)

)
= O(|ω|−J ), ω ∈ ∂Dk,n,

and the uniformly bounded contour lengths give the claimed estimates. �

5.3. A spectral shift theorem

Our final result is a limit theorem for eigenvalue clusters, where as before ω2
k,n is an eigenvalue

for −D2 on the graph, ωk,n ∈ Dk,n. As motivation, consider the periodic problem for
0 � x � 1,

−y ′′ + p(x)y = λy, y(0) = y(1), y ′(0) = y ′(1).

For large values of λ, there will be an eigenvalue pair λ2n−1, λ2n located near (2nπ)2. Classical
asymptotics [18, p 40] gives the estimate

lim
n→∞(λ2n−1 + λ2n) − 2(2nπ)2 = 2

∫ 1

0
p(x) dx.

This result has a known extension to spheres [19].
For quantum graphs with edges of length 1, we have the following generalization to cluster

traces. Note that the sums computed below are slightly different from those of theorem 5.3.

Theorem 5.4. Suppose w2
i are the eigenvalues of −D2 + q, listed with multiplicity, with

wi ∈ Dk,n. Then

lim
n→∞

∑
wi∈Dk,n

(
w2

i − ω2
k,n

) = �k(q),

where �k(q) is a linear combination of the numbers∫ 1

0
qj (x) dx, j = 1, . . . , NE .

13



J. Phys. A: Math. Theor. 41 (2008) 145202 R Carlson and V Pivovarchik

Proof. For this result, it suffices to use J = 2. Using (5.3) define

E1 =
(

exp(iω)IN exp(−iω)IN

exp(iω)IN −exp(−iω)IN

)
and

E2 =
(

EJ,+ EJ,−
E′

J,+ E′
J,−

)
= E1 +

1

2iω

(
exp(iω)[Q] − exp(−iω)[Q]
exp(iω)[Q] exp(−iω)[Q]

)
. (5.9)

Then

F2(ω) = (B3 B4 )[E2 − E1]

(
IN 0N

0N ζIN

)
= 1

2iω
(B3 B4 )

(
exp(iω)[Q] −ζ exp(−iω)[Q]
exp(iω)[Q] ζ exp(−iω)[Q]

)
= 1

2iω
(ζ(B3 + B4)[Q] (B4 − B3)[Q] ).

We want to calculate the asymptotics of the first two terms∑
i

(wi − ωk,n),
∑

i

(
w2

i − ω2
k,n

)
.

With γk,n parametrizing ∂Dk,n and using a technique similar to that of theorem 5.3,∑
i

(
w

p

i − z
p

i

) = 1

2π i

∫
γk,n

ωp∂ω log

(
det(χF )

det(F1 + F2)

)
dω

= − 1

2π i

∫
γk,n

pωp−1 log

(
det(χF )

det(F1 + F2)

)
dω.

From

χF (ω) = F1 + F2 + O(ω−2),

and the uniform bounds for (F1 + F2)
−1 = (

I2N + F−1
1 F2

)−1
F−1

1 on ∂Dk,n, it follows that

det(χF )

det(F1 + F2)
) = det((F1 + F2)

−1χF ) = det(I2N + O(ω−2))

= 1 + O(ω−2), ω ∈ ∂Dk,n.

Since

log

(
det(χF )

det(F1 + F2)

)
= O(ω−2),

taking limits over the sums from Dk,n as n → ∞ gives

lim
n→∞

∑
i

(
w

p

i − z
p

i

) = 0, p = 1, 2, (5.10)

and wi may be replaced by zi for p = 1, 2.
So for p = 1, 2 consider∑

i

(
z
p

i − ω
p

k,n

) = − 1

2π i

∫
γk,n

pωp−1 log

(
det(F1 + F2)

det(F1)

)
dω.

Since

log det
(
I2N + F−1

1 F2
) = O(ω−1),

14
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and using (5.10), the p = 1 case has

lim
n→∞

∑
wi∈Dk,n

(wi − ωk,n) = lim
n→∞

∑
zi∈Dk,n

(zi − ωk,n) = 0.

Now suppose p = 2. First of all we note that det
(
I + F−1

1 F2
)

is the product of the
diagonal entries of I2N + F−1

1 F2 plus terms that are O(ω−2) on ∂Dk,n. These terms contribute
0 to the limit being computed. Expanding the product of the diagonal entries

∏
(1 + drr ), with

drr = O(ω−1), we find

det
(
I2N + F−1

1 F2
) = 1 + tr

(
F−1

1 F2
)

+ O(ω−2), ω ∈ ∂Dk,n.

Similarly

log det
(
I2N + F−1

1 F2
) = tr

(
F−1

1 F2
)

+ O(ω−2), ω ∈ ∂Dk,n.

Thus, with the help of (5.10),

lim
n→∞

∑
wi∈Dk,n

(
w2

i − ω2
k,n

) = lim
n→∞

∑
zi∈Dk,n

(
z2
i − ω2

k,n

)
= − lim

n→∞
1

2π i

∫
γk,n

2 tr
(
F−1

1 ωF2
)

dω

= − lim
n→∞

1

2π

∫
γk,n

tr F−1
1 (ζ(B3 + B4)[Q] (B4 − B3)[Q] ) dω. (5.11)

The result is finished by noting that the integrand is periodic in ω with period 2π , so the
integrals are independent of n. �

We conclude with some remarks about higher order generalizations of theorem 5.4. For
J > 2 let zi(J ) denote the roots of det(F1 + FJ ), which are located in Dk,n. As in the proof
above, there is an error estimate

lim
n→∞

∑
i

(
w

p

i − z
p

i (J )
) = 0, p = 1, 2, . . . , J.

Assuming the limits exist, it follows that

lim
n→∞

∑
i

(
w

p

i − z
p

i (J − 1)
) = lim

n→∞

∑
i

(
z
p

i (J ) − z
p

i (J − 1)
)
, p = 1, 2, . . . , J.

The differences of powers on the right are represented by∑
i

(
z
p

i (J ) − z
p

i (J − 1)
) = − 1

2π i

∫
γk,n

pωp−1 log

(
det(F1 + FJ )

det(F1 + FJ−1)

)
dω. (5.12)

The function det(F1 + FJ )/det(F1 + FJ−1) has two convenient representations. First,
det(F1 + FJ )

det(F1 + FJ−1)
= det(I2N + (F1 + FJ−1)

−1(FJ − FJ−1))

= 1 + O(ωJ−1), ω ∈ ∂Dk,n.

In particular, (5.12) gives

lim
n→∞

∑
i

(
w

p

i − z
p

i (J − 1)
) = 0 p = 1, 2, . . . , J − 1.

Alternatively,

det(F1 + FJ )

det(F1 + FJ−1)
= det

(
I2N + F−1

1 FJ

)
det

(
I2N + F−1

1 FJ−1
) .

The matrix function
[
I2N + F−1

1 FJ−1)
]−1

(ω) has a geometric series expansion, allowing us to
find an ‘elementary’ representative for the order ωJ−1 term of log(det(F1 +FJ )/det(F1 +FJ−1),
and thus a formula in the style of (5.11).
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